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Abstract. The charge form factor of the pion is calculated for the momentum transfer range of the Jefferson
Lab experiments. The approach is based on the instant form of the relativistic Hamiltonian dynamics. It
is shown that the form-factor dependence on the choice of the model for the quark wave function in the
pion is weak, while the dependence on the constituent-quark mass is rather significant. It is possible to
estimate the mass of the constituent quark and the sum of the anomalous magnetic moments of the u- and
d̄-quarks from the JLab experiments.

At present, the constituent quark model (CQM) is widely
and successfully used for the description of hadron proper-
ties at low and intermediate energies [1–14]. The reasons
for this are well known: first, CQM uses the physically
adequate degrees of freedom; second, CQM describes non-
perturbative effects. These facts give the possibility to use
CQM for the investigation of the so-called “soft” structure
of hadrons, e.g., in exclusive processes, in contrast to QCD
(see, e.g., [15]).

The main feature of CQM versus QCD is the extrac-
tion of a finite number of the most important degrees of
freedom needed to describe the hadron. All dynamical ef-
fects of QCD are incorporated in CQM through the ef-
fective (constituent) quark mass and the internal quark
structure in terms of the quark form factors. So in the
framework of CQM, constituent quarks have all the ma-
terial properties of free particles and interact with each
other through the confinement potential. This means that
the constituent quark is characterized by an effective mass,
a mean-square radius (MSR) and an anomalous magnetic
moment. Let us remark that the concept of extended con-
stituent quarks also appears in some quantum field theory
models, for example, in the Nambu–Jona–Lasinio model
with spontaneous chiral symmetry breaking [16]. In this
context one can imagine that CQM is initiated by QCD.
However, it is very important for us to remind ourselves
that CQM is not a direct consequence of QCD, but a very
successful phenomenological model [17].

For the description of electroweak properties it is nec-
essary to take into account the relativistic effects, which
especially are large in systems of light quarks. We will use
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the relativistic Hamiltonian dynamics (RHD) [18], which
is one of the approaches to describe the relativistic prop-
erties of CQM.

In the present paper we discuss the dependence of the
electromagnetic pion form factor on the internal quark
structure. The interest in this problem is due particularly
to a possible interpretation of current experiments at Jef-
ferson Lab of the measurement of the pion form factor [19]
in the range of momentum transfer 0.5 (GeV/c)2 < Q2 <
5 (GeV/c)2. Using one of the relativistic forms of CQM we
obtain the result that the pion form factor in this region
of Q2 depends strongly on the constituent-quark mass,
while the dependence on the model of the quark interac-
tion in the pion is weak. This fact gives hope that it could
be possible to estimate the constituent-quark mass from
Jefferson Lab experiments. With the use of the model in-
dependent Gerasimov sum rule [20], it is possible to esti-
mate the anomalous magnetic moments of the constituent
quarks from these experiments and our calculations. So,
the important characteristics of CQM can be obtained.

It is necessary to make a remark on the applicability of
the concept of the constituent-quark model in the case of
the pion. As is well known (see, e.g., [21]) in the low energy
region the pion can be considered as the Goldstone boson
of spontaneously broken chiral symmetry in QCD with
massless quarks. In such an approach one can describe the
small value of the pion mass as well as the observed lep-
tonic decay constant. However, in this approach the pion’s
internal structure, in particular the observed electromag-
netic structure, cannot be described adequately (see, e.g.,
[22]).

On the other hand, the quark presence in the pion
has been clearly demonstrated at high energy through
muon pair production in Drell–Yan processes [23]. To use
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the pion quark concept at low energy one needs to take
into account non-perturbative dynamical effects. In the
frame of CQM the quark degrees of freedom appear as
constituent quarks: the effective particles including the
quark–gluon cloud. The constituent-quark structure usu-
ally is described in a phenomenological way by the set
of parameters mentioned above, including the constituent
mass. CQM cannot pretend, naturally, to describe the
small value of the pion mass; however, it pretends to give
a phenomenological description of the observed internal
structure, e.g., its electromagnetic properties.

The concept of the pion as a Goldstone boson and that
of the pion as a quark–antiquark composite system are in
duality and at present have not yet been unified in the
framework of one single approach, although attempts to
this effect exist (see, e.g., [22]).

In this paper, we use the version of [24] of the instant
form of RHD.

The charge form factor of the pion can be obtained
from the electromagnetic current matrix element for a
composite system in an arbitrary coordinate frame:

〈pπ|jµ|p′
π〉 = (pπ + p′

π)µFπ(Q2). (1)

Fπ(Q2) is the electromagnetic form factor of the pion, de-
scribing the transition dynamics; it is an invariant func-
tion. The 4-vector (pπ − p′

π)µ describes the geometric
(transformation) properties of the matrix element, pπ the
4-momentum of the pion.

In RHD the Hilbert space of composite particle states
is the tensor product of single particle Hilbert spaces:
Hqq̄ ≡ Hq ⊗ Hq̄, and the state vector in RHD is a su-
perposition of two-particle states. As a basis in Hqq̄ one
can choose the following set of vectors:

|p1,m1;p2,m2〉 = |p1,m1〉 ⊗ |p1,m2〉,
〈p,m|p′,m′〉 = 2p0δ(p − p′)δmm′ . (2)

Here p1,p2 are the particle momenta and m1,m2 the spin
projections.

Since we consider the two-quark system as one compos-
ite system, the natural basis is one with separated center-
of-mass motion:

|P ,
√
s, J, l, S,mJ〉, (3)

with Pµ = (p1 + p2)µ, P 2
µ = s, s1/2 is the invariant mass

of the two-particle system, l the angular momentum in
the center-of-mass frame, S the total spin, J the total
angular momentum, mJ the projection of the total angular
momentum.

The basis (3) is connected with (2) through the
Clebsch–Gordan decomposition of the Poincaré group [24].

Now the decomposition of the electromagnetic current
matrix element for the composite system (1) in the basis
(3) has the form

(pπ + p′
π)µFπ(Q2)

=
∑ ∫

dP

NCG

dP ′

N ′
CG

d
√
sd

√
s′〈pπ|P ,

√
s, J, l, S,mJ〉

×〈P ,
√
s, J, l, S,mJ | jµ | P ′,

√
s′, J ′, l′, S′,mJ

′〉
×〈P ′,

√
s′, J ′,′ , S′,mJ

′|pπ
′〉. (4)

Here the sum is over the discrete variables of the basis
(3). 〈P ,

√
s, J, l, S,mJ |pπ〉 is the composite system wave

function,

〈P ′,
√
s′, J ′, l′, S′,m′

J |pπ〉
= Nπδ(P ′ − pc)δJJ′δmJm′

J
δll′δSS′ϕJ

lS(k). (5)

s = 4(k2 + M2), M is the quark mass; Nπ and NCG are
factors due to normalization. The concrete form of Nπ and
NCG will not be used.

The basis (3) is the relativistic analogy of the basis
of the generalized spherical functions of non-relativistic
quantum mechanics (see, e.g., [25]). In this basis the pion
wave function is the eigenfunction of the operators Ĵ2, Ĵ3,
l̂2 as well as of the operator of the total spin squared, Ŝ2,
defined in the invariant way (see, e.g., [26]). All the oper-
ators have zero eigenvalues, because for the pion J = l =
S = 0. The quark spin properties are taken into account
in the basis (3) by the corresponding Clebsch–Gordan de-
composition.

Using the fact that the right-hand side of (4) is covari-
ant and considering (5) let us write (4) as follows:

(pπ + p′
π)µFπ(Q2) (6)

=
∫

d
√
sd

√
s′ϕ(k)Aint

µ (s,Q2, s′)g(s,Q2, s′)ϕ(k′).

Here we use for simplicity the notation ϕJ
lS(k) → ϕ(k),

g(s,Q2, s′) is the invariant part of the current matrix ele-
ment which describes the transition dynamics, and Aint

µ is
the covariant part of the matrix element which describes
its transformation properties.

Equation (6) means that the two 4-vectors are equal
and this equality is to be valid for any choice of the wave
function ϕ(s) of the two-particle system’s internal motion.
If the wave function is varied, then the scalar part of the
l.h.s. (the form factor Fπ(Q2)) is changed, while the co-
variant part (the vector (pπ + p′

π)µ) remains unchanged,
because the vector (pπ + p′

π)µ describes the system as a
whole and does not depend on the interaction inside the
system. So, when the wave function is varied the l.h.s. re-
mains collinear to the vector (pπ+p′

π)µ. In the general case
the 4-vector in the r.h.s. changes direction. The equality
is valid for an arbitrary choice of wave function only if
the vector Aint

µ is collinear to the vector (pπ + p′
π)µ in any

coordinate system, so that the proportionality factor can
be included in the invariant form factor g(s,Q2, s′). This
form for Aint

µ is unique and most general.
So, we obtain the following integral representation for

the pion form factor:

Fπ(Q2) =
∫

d
√
sd

√
s′ϕ(k)g(s,Q2, s′)ϕ(k′). (7)

To calculate g(s,Q2, s′) one has to make some physi-
cal approximations. We shall perform our calculations in
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the frame of the relativistic impulse approximation given
in terms of invariant form factors. This means that in-
stead of the invariant function g(s,Q2, s′) we shall use the
invariant function g0(s,Q2, s′) which defines the electro-
magnetic current matrix element for the system of two free
particles in the basis (3) with pion quantum numbers:

〈P ,
√
s, J, l, S,mJ |j0

µ|P ′,
√
s′, J ′, l′, S′,mJ

′〉
= Aµ(s,Q2, s′)g0(s,Q2, s′). (8)

The vector Aµ(s,Q2, s′) is defined by the current trans-
formation properties (by Lorentz covariance and the cur-
rent conservation law):

Aµ = (1/Q2)[(s − s′ + Q2)Pµ + (s′ − s + Q2)P ′
µ]. (9)

In this approach we are dealing with the following inte-
gral form of the pion’s electromagnetic form factor in the
relativistic impulse approximation:

Fπ(Q2) =
∫

d
√
sd

√
s′ϕ(k)g0(s,Q2, s′)ϕ(k′). (10)

Here g0(s,Q2, s′) is the so-called free two-particle form fac-
tor to be derived by the methods of relativistic kinematics
[24], ϕ(k) is a phenomenological wave function normalized
taking into account the relativistic density of states [24]:

ϕ(k) = 4
√

4(k2 + M2)ku(k),
∫

dkk2u2(k) = 1. (11)

Here u(k) is a non-relativistic wave function. The free two-
particle form factor in (10) is of the form [24]:

g0(s,Q2, s′)

=
(s + s′ + Q2)Q2

2
√

(s − 4M2)(s′ − 4M2)

× θ(s′ − s1) − θ(s′ − s2)√
1 + Q2/4M2[λ(s,−Q2, s′)]3/2

×
{
(s + Q2 + s′)[Gu

E(Q2) + Gd̄
E(Q2)] cosω(s,Q2, s′)

+M−1ξ(s,Q2, s′)[Gu
M (Q2) + Gd̄

M (Q2)]

× sinω(s,Q2, s′)
}
, (12)

where

ξ(s,Q2, s′) =
√

ss′Q2 − M2λ(s,−Q2, s′),

λ(a, b, c) = a2 + b2 + c2 −2(ab+ac+ bc), Gu,d̄
E (Q2) and

Gu,d̄
M (Q2) are the electric and magnetic single-quark Sachs

form factors, θ is the step function, ω(s,Q2, s′) = ω1 +ω2
is the Wigner rotation parameter, and

ω1 = arctan
ξ(s,Q2, s′)

M [(
√
s +

√
s′)2 + Q2] +

√
ss′(

√
s +

√
s′)

,

ω2 = arctan
α(s, s′)ξ(s,Q2, s′)

M(s + s′ + Q2)α(s, s′) +
√
ss′(4M2 + Q2)

,

where α(s, s′) = 2M + s1/2 + s′1/2, and s1,2 are given by
the kinematic constraint [7,13]

s1,2 = 2M2 +
1

2M2 (2M2 + Q2)(s − 2M2)

∓ 1
2M2

√
Q2(Q2 + 4M2)s(s − 4M2).

While obtaining (7) and (10) we did not use a fixed
coordinate frame (for example, a Breit frame) or fixed
(“good”) current components, as one usually does in other
RHD approaches [18]. In this respect, our calculations are
Lorentz covariant. Our current matrix element satisfies
conservation laws, so that the current operator of com-
posite system does contain the contribution not only of
one-particle currents but of two-particle currents too [24]
(in its covariant part Aint

µ in (6)).
We are proceeding based on the physical assumption

that CQM as a phenomenological model has to describe
correctly: (a) the charge conservation law Fπ(0) = 1; (b)
the pion MSR 〈r2

π〉1/2, which is measured in a model inde-
pendent way; (c) the lepton decay constant fπ; (d) the
non-relativistic limit; (e) the chromodynamical asymp-
totics at Q2 → ∞. All these conditions are fulfilled in
our approach.

The functional form of the quark form factor is moti-
vated by the asymptotic condition (details can be found
in [27]). By analogy with [10] and with the scaling of the
nucleon form factors we write

Gq
E(Q2) = eqf(Q2), Gq

M (Q2) = (eq + κq)f(Q2), (13)

where eq is the quark charge and κq is the quark anoma-
lous magnetic moment. However, we do not use for fq(Q2)
the form of [10] but that of [11]:

fq(Q2) =
1

1 + ln(1 + 〈r2
q〉Q2/6)

. (14)

Here 〈r2
q〉 is the quark MSR. Let us briefly discuss the

motivation for choosing the explicit form (14). One of the
features of our approach is the fact that the form-factor
asymptotic behavior at Q2 → ∞, M → 0 does not de-
pend on the choice of the wave function in (10) and is
defined by the relativistic kinematics of two-quark system
only [12]. In the point-like quark approximation (κq=0,
〈r2

q〉= 0) the asymptotics coincides with that described by
quark counting laws [28]: Fπ(Q2) ∼ Q−2. The form (14)
gives logarithmic corrections to the power-law asymptotics
obtained in QCD. So in our approach the form (14) for the
quark form factor gives the same asymptotics as in QCD.
Let us notice, however, that the main results of the present
paper do not depend on the actual form of the quark form
factor.

As the quark interaction potential is not known from
first principles, CQM usually deals with model potentials
and wave functions depending on fitting parameters. To
calculate the pion form factor we use the following wave
functions for the ground state of the quark–antiquark sys-
tem.
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(1) The harmonic oscillator (HO) wave function (see
e.g. [3]):

u(k) = NHOexp
(−k2/2b2

)
. (15)

(2) The power-law (PL) wave function (see e.g., [9]):

u(k) = NPL(k2/b2 + 1)−3. (16)

(3) The wave function with linear confinement and Cou-
lomb-like behavior at small distances [29]:

u(r) = NT e−αr3/2−βr, α =
2
3

√
Ma, β =

Mb

2
. (17)

In (17), a and b are the parameters of the linear and Cou-
lomb parts of the potential respectively. b = (4/3)αs, αs =
0.59 on the scale of the light mesons mass.

One can see from (10)–(17) that we use the standard
CQM parameters: the constituent-quark masses Mu =
Md = M , the u- and d̄-quark anomalous magnetic mo-
ments κu, κd̄ (which enter our equations through the sum
sq = κu + κd̄), the constituent-quark MSR 〈r2

u〉 = 〈r2
d〉 =

〈r2
q〉 and the wave functions parameters b in the models

of (15) and (16), and a and b in the model of (17). Let
us remark that the relativistic effects of spin rotation are
responsible for the contribution of the quark magnetic mo-
ments to the charge pion form factor [27].

Let us notice that the electroweak properties of mesons
have been discussed by different authors in the frame-
work of CQM in the point-quark approximation (〈r2

q〉 = 0,
κq = 0) and a consistent description of some processes has
been obtained [3,4,6,9,13]. However, there are strong ar-
guments against this approximation. The model indepen-
dent Gerasimov sum rules [20] indicate the existence of
anomalous magnetic moments of the constituent quarks.
The anomalous magnetic moments of the quarks appear
in the calculations of [2,30]. Let us refer also to our paper
[13] where the pion form factor was calculated in a point-
like quark model. In [13] our aim was to describe only the
electromagnetic properties of the pion, and this was pos-
sible with point-like quarks. In that case, we obtained a
strong dependence of the form factor on the explicit form
of the wave function. However, a simultaneous description
of electromagnetic (MSR) and weak (lepton decay con-
stant fπ) properties is impossible in the point-like quark
model with sufficient accuracy at realistic values of the
parameters. So, in our approach the quark internal struc-
ture appears in a natural way. In the case considered in
the present paper the form-factor dependence on the wave
function is found to be weak.

The parameters in our calculations are of two types.
The first type of parameters enter the electromagnetic or
weak current of the constituent quark: M , sq, 〈r2

q〉. The
second type of parameters characterize the quark interac-
tion (wave functions), b, a. The first parameter type is to
be fixed independently of the choice of the model interac-
tion. In other words, the calculation of composite quark
systems is analogous to that of composite nuclear systems,
e.g., the deuteron. In the calculation of the deuteron elec-
tromagnetic properties one fixes the parameters in nucleon

form factors independently of the choice of the nucleon–
nucleon interaction potential.

Let us now fix the parameters. At present, there are
two pion characteristics that can be extracted from the
data in a model independent way and with sufficient ac-
curacy: the mean square radius 〈r2

π〉1/2
exp = 0.657±0.012 fm

[31], and the lepton decay constant fπexp = 0.1317 ±
0.0002GeV [32]. We assume that the calculations for any
quark interaction model satisfy (in addition to the descrip-
tion of the particle spectrum) the conditions

〈r2
π〉1/2 = 〈r2

π〉1/2
exp, (18)

fπ = fπexp. (19)

We have used the following forms for the pion MSR and
the lepton decay constant [13]:

〈r2
π〉 = −6

dFπ(Q2)
dQ2

∣∣∣∣
Q2=0

= 〈r2
r.m.〉 + 〈r2

q〉, (20)

fπ =
M

√
3

π

∫
k2dk

(k2 + M2)3/4u(k). (21)

In (20) 〈r2
r.m.〉 is the contribution of the quarks’ relative

motion and depends on M , sq and on the wave function
parameters; 〈r2

q〉 is the part of the pion MSR due to the
MSR of the quarks. The lepton decay constant is defined
by the wave function parameters and by the mass of the
constituent quark.

The details of the derivation of (21) in the framework
of the instant form RHD are given in [11]. It is worth to
notice that (21) coincides with the expression obtained in
the framework of another RHD form, namely light front
dynamics in [6]. The factor (k2 +M2)3/4 in the integrand
appears as a consequence of the relativistic approach to
fπ. In the non-relativistic limit (21) gives the lepton decay
constant in terms of the value of the wave function at the
origin in the coordinate representation.

The choice of the values of (18) and (19) to fix the
parameters has the following reason. As one can see from
(20), the mean square radius of the pion is determined
by the form-factor behavior near zero. This means that
the condition (18) gives, in fact, a constraint for the pion
form factor at small Q2 values. Analogously the constant
fπ is connected with the pion form-factor behavior at large
momentum transfer. So the conditions (18) and (19) con-
strain, in fact, the pion form-factor behavior at small and
large momentum transfer.

Thus, the constituent-quark parameters M , sq and
〈r2

q〉 are the same for all the wave functions in (15), (16)
and (17). We shall use the relation 〈r2

q〉 � 0.3/M2 between
the MSR and the mass of the constituent quark [10,16].

Let us consider now the parameter sq and the param-
eters of the wave functions. To fix these parameters in the
framework of the model under consideration one can use
the conditions (18) and (19). A difficulty is the fact that
the parameter sq of the internal quark structure has to be
the same for all models in (15), (16) and (17). Because of
this we choose sq and the wave functions parameters in
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Table 1. The values of the model parameters for the higher
(M = 0.22GeV), medium (M = 0.25GeV) and lower (M =
0.33GeV) groups of curves in Fig. 1. The parameter b in (15)
and (16) is in GeV, the parameter a in (17) is in GeV2. The
wave function parameters b and a and the sum sq of the quark
anomalous magnetic moments are derived from the fitting of
the pion MSR 〈r2

π〉1/2=0.657±0.012 fm [31] and the best pos-
sible posterior fitting of the value fπexp = 131.7± 0.2MeV [32]

M = 0.22 M = 0.25 M = 0.33
sq = 0.0268 sq = −0.0023 sq = −0.1965

Model b, a fπ b, a fπ b, a fπ

(15) 0.3500 127.4 0.3069 127.8 0.2558 125.1
(16) 0.6131 131.7 0.5401 131.7 0.4901 131.7
(17) 0.1331 131.7 0.0670 132.1 0.0187 131.7

such a way as to satisfy the condition (18) precisely for all
the models (up to experimental errors) and the condition
(19) approximately, but with minimal deviation for each
model.

The corresponding values are given in Table 1. In such
a way we fix all parameters but one: the constituent-quark
mass M remains as a fitting parameter. When one changes
M the other parameters are changed following the indi-
cated prescription, 〈r2

q〉, sq, a and b being functions of M .
The results of our calculation of the pion form fac-

tor using the parameters from Table 1 indicate that the
form-factor dependence on the quark interaction model is
weak, while the dependence on the constituent-quark mass
is rather significant. Our results are presented in Fig. 1.
The curves calculated with different wave functions but
one and the same quark mass form groups1. In Fig. 1 the
position of the group changes essentially with the quark
mass.

The great accuracy of planned JLab experiments will
make it possible to fix the position of “the group” rather
accurately and, so, to determine the constituent-quark
mass2. This estimate (almost) will not depend on the in-
teraction model for quarks in pion.

It is worth to emphasize that the function fq(Q2), see
(14), enters Fπ(Q2) as a multiplier, so the choice of fq(Q2)
does not influence the relative position of the curves for
different M and different model wave functions.

It is possible that the slope of the experimental curve
will turn out to be greater than in our groups, so that
for different Q2 the points will belong to different groups.

1 A similar result was obtained in the framework of light
front dynamics in [9] and the instant form in [11], where it was
found that the charge form factor is approximately insensitive
for a large class of wave functions. In [9] and [11] the depen-
dence on the constituent-quark mass was not investigated

2 Let us note that the use of our approach to the existing ex-
perimental data (see Fig. 1) gives only a rough estimate for
the mass: 0.22 < M < 0.33GeV. A glance at Fig. 1 gives
M � 0.25GeV for the existing experimental data, close to the
estimate M = 0.24GeV given in [33]. The first measurements
of Fπ in JLab [34] give M � 0.21GeV [35].

Fig. 1. The π-meson form factor in the range of the JLab ex-
periments. The results of the calculations are for different in-
teraction models and for M = 0.22, 0.25, 0.33GeV. The curves
with the same mass form a group. The position of a group is
defined by the constituent-quark mass

This case will indicate that the constituent-quark mass
depends on the momentum transfer, in the spirit of [8].

So our approach gives the possibility to estimate the
constituent-quark mass from the experimental pion form
factor. Moreover, if the mass has been determined we can
estimate the anomalous magnetic moments of the u- and
d-quarks using the parameter sq = κu + κd̄. To perform
this estimate one can use the model independent Gerasi-
mov sum rule [20]: (eu + κu)/(ed + κd) = −1.77. For ex-
ample, for M � 0.25GeV we obtain κu = −0.0285, κd =
−0.0262; these values are of the order of the values of [20].
The variation of M gives different values of sq, and thus,
of κu and κd.

The analogous program can be carried out for the
kaon.

To conclude, the calculation of the pion form factor
in the framework of our approach based on the instant
form RHD gives a weak dependence on the interaction
model for quarks in the pion, while the dependence on the
constituent-quark mass is strong. One can imagine that
any approach to the calculation of the form factor with
any wave function will give a result close to our result, if
the MSR and the lepton decay constant are described well
enough. Our results provide a possibility to estimate the
parameters of the constituent quarks from JLab experi-
ments.
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469 (1990); B. Povh, J. Hüfner, Phys. Lett. B 245, 653
(1990); S.M. Troshin, N.E. Tyurin, Phys. Rev. D 49, 4427
(1994)

17. S. Godfrey, hep-ph/9712545
18. B.D. Keister, W. Polyzou, Adv. Nucl. Phys. 21, 225 (1991)
19. CEBAF Program Advisory Committee, Report of June

14–18, 1993
20. S.B. Gerasimov, Phys. Lett. B 357, 666 (1995),
21. W. Weise, Contemp. Phys. 31, 261 (1990)
22. H. Ito, W.W. Buck, F. Gross, Phys. Rev. C 45, 1918 (1992)
23. J. Badier et. al., Z. Phys. C 18, 281 (1983)
24. E.V. Balandina, A.F. Krutov, V.E. Troitsky, Teor. Math.

Phys. 103, 381 (1995); A.F. Krutov, V.E. Troitsky, hep-
ph/9707533, hep-ph/9707534, hep-ph/9704293 (unpub-
lished)

25. R. Newton, Scattering theory of waves and particles, 2nd
ed. (Springer Verlag, New York 1982)

26. V.P. Kozhevnikov, V.E. Troitsky, S.V. Trubnikov, Yu.M.
Shirokov, Theor. Math. Fiz. 10, 47 (1972)

27. A.F. Krutov, V.E. Troitsky, JHEP 10, 028 (1999)
28. V.A. Matveev, R.M. Muradyan, A.N. Tavkhelidze, Lett.

Nuovo Cim. 7, 719 (1973); 15, 907 (1973); S. Brodsky, G.
Farrar, Phys. Rev.Lett. 31, 1153 (1973)

29. H. Tezuka, J. Phys. A Math. Gen. 24, 5267 (1991)
30. S. Capstick, B.D. Keister, nucl-th/9611055
31. S.R. Amendolia et al., Phys. Lett. B 146, 116 (1984)
32. Particle Data Group. Part II, Phys. Rev. D 45, (1992)
33. S.B. Gerasimov, Yad. Fiz. 29, 513 (1979)
34. J. Volmer et al., nucl-ex/0010009
35. A.F. Krutov, V.E. Troitsky, nucl-th/0010076


